Starter Tutorial
Once you have installed LlamaIndex.TS using NPM and set up your OpenAI key, you're ready to start your first app:
In a new folder:
- npm
- Yarn
- pnpm
npm install typescript
npm install @types/node
npx tsc --init # if needed
yarn add typescript
yarn add @types/node
npx tsc --init # if needed
pnpm add typescript
pnpm add @types/node
npx tsc --init # if needed
Create the file example.ts
. This code will load some example data, create a document, index it (which creates embeddings using OpenAI), and then creates query engine to answer questions about the data.
// example.ts
import fs from "fs/promises";
import { Document, VectorStoreIndex } from "llamaindex";
async function main() {
// Load essay from abramov.txt in Node
const essay = await fs.readFile(
"node_modules/llamaindex/examples/abramov.txt",
"utf-8",
);
// Create Document object with essay
const document = new Document({ text: essay });
// Split text and create embeddings. Store them in a VectorStoreIndex
const index = await VectorStoreIndex.fromDocuments([document]);
// Query the index
const queryEngine = index.asQueryEngine();
const response = await queryEngine.query(
"What did the author do in college?",
);
// Output response
console.log(response.toString());
}
main();
Then you can run it using
npx ts-node example.ts
Ready to learn more? Check out our NextJS playground at https://llama-playground.vercel.app/. The source is available at https://github.com/run-llama/ts-playground